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Abstract
Borisov, Mamaev and Kilin have recently found certain Poisson structures with
respect to which the reduced and rescaled systems of certain non-holonomic
problems, involving rolling bodies without slipping, become Hamiltonian, the
Hamiltonian function being the reduced energy. We study further the algebraic
origin of these Poisson structures, showing that they are of rank 2 and therefore
the mentioned rescaling is not necessary. We show that they are determined, up
to a non-vanishing factor function, by the existence of a system of first-order
differential equations providing two integrals of motion. We generalize the
form of the Poisson structures and extend their domain of definition. We apply
the theory to the rolling disc, the Routh’s sphere, the ball rolling on a surface
of revolution, and its special case of a ball rolling inside a cylinder.

PACS numbers: 02.40.k, 03.04.t
Mathematics Subject Classification: 70G45, 70E18, 70F25

1. Introduction

In recent years there has been an increasing interest in the geometric treatment of non-
holonomic mechanical systems (see, e.g., [2, 3, 5, 6, 10, 12, 19, 28, 29, 31, 38–40]). In
particular, it has been recognized that the Hamiltonian formulation of such systems can be
stated in terms of an almost-Poisson bracket, that is, a biderivation of functions of phase
space, antisymmetric in its arguments but which does not necessarily fulfil the Jacobi identity
(see, e.g., [1, 11, 36]). Therefore, for researchers in this field, it seems to be usual for the
conceptual association of the Hamiltonian formulation of non-holonomic mechanical systems
with almost-Poisson structures.

On the other hand, there exist non-holonomic systems which, after certain reductions
are performed, admit a Hamiltonian formulation after a ‘rescaling of time’ is carried out, by
means of rescaling factors (sometimes called invariant measures) of the reduced vector field
of the system. This is the case for the so-called LR systems, which are systems formulated on
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compact Lie groups endowed with a left-invariant metric and right-invariant non-holonomic
constraints. After a rescaling of time, their corresponding reduced systems become integrable
Hamiltonian systems describing geodesic flows on unit spheres [24]. In [9], a necessary and
sufficient condition for the existence of an invariant measure for the reduced dynamics of
generalized Chaplygin systems of mechanical type is given. Another recent work on this
line is [43]. For a classic treatment of the theory of Chaplygin’s reducing multiplier, see
section III-12 of [33]. Thus, it could be conceptually associated as well the existence of
specific rescaling factors for these reduced systems with the possibility of formulating them
in a Hamiltonian way.

In addition, Borisov, Mamaev and Kilin [7, 8] have recently found a Poisson structure for
each studied case of reduced non-holonomic systems, such that the reduced system becomes
Hamiltonian, with respect to such a structure, after a rescaling, the Hamiltonian function being
the reduced energy. The examples treated by them are classical in the literature, consisting
mainly of rolling bodies without slipping, namely a rigid body of revolution rolling on a plane,
in particular the Routh’s sphere (see section 4.2), the rolling disc (to be treated in section 4.1),
the motion of a homogeneous ball on a surface of revolution (see section 4.3), which is
sometimes called Routh’s problem [42, 43], and other cases, like axisymmetric bodies rolling
on a plane and a sphere [7]. There is a strong emphasis in [7, 8] in the sense that the Poisson
structure for each case can be found after a rescaling of time of the reduced vector field.

Our primary motivation for this work was to understand the origin of the two integrals of
motion appearing in the mentioned problem of a ball rolling without slipping inside a surface
of revolution, which are not given, in general, in an explicit form but being related to the
solutions of a system of first-order non-autonomous differential equations [25, 35, 42]. This
also happens in the other mentioned cases. The results of [7, 8] suggest that such systems can
be interpreted as the equations providing a set of functionally independent Casimir functions
of the Poisson structure they find for each specific case. Therefore, it seemed to be worth
investigating further such Poisson structures, in particular to clarify their domain of definition
and basic properties. Let us note that another recent approach, devoted to the study of Poisson
structures which can be associated with never-vanishing vector fields on manifolds of arbitrary
dimension d � 2, with fibrating periodic flows, is given in [23].

It follows that the previously mentioned Poisson structures have a rather peculiar form.
In particular, the associated characteristic distributions have rank 2 in the open sets of the
reduced spaces considered in [7, 8]. This property implies that such Poisson structures,
when multiplied by a never vanishing function, are again Poisson structures of the same type.
The immediate consequence is that the above-mentioned reduced non-holonomic systems
are already Hamiltonian with respect to one of these Poisson structures without any need of
rescaling.

Other interesting result is that, in the cases studied, the Poisson structures obtained can
be extended from their original domains of definition, namely (open sets of) semialgebraic
subvarieties of R

5, to an open set of the ambient space. Such extended Poisson structures
become zero only at the so-called singular equilibria of the reduced systems. Moreover, the
existence of these (extended) Poison structures, from an algebraic point of view, is only caused
by the existence of integrals of motion of the reduced vector field related to the solutions of
the mentioned systems of first-order differential equations.

This paper is organized as follows. In section 2, we briefly review some notions of
Poisson geometry and in particular, of Poisson structures of rank 2. In section 3, we show
the explicit expressions of certain bivectors in R

4 and R
5, determined up to a non-vanishing

factor function, by choosing the 1-forms in their kernels to have a specific form, and we prove
that they are in fact Poisson bivectors of rank 2. Section 4 is devoted to show the application
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of the previous results in specific examples, namely, the rolling disc, the Routh’s sphere,
and the ball rolling on a surface of revolution. We will use the formulation of [17, 18] and
[25], respectively, of these problems, rather than that of [7, 8]. However, we point out the
equivalence of both treatments in the last case. We also treat the special case of a ball rolling
inside a cylinder. Finally, we end with some conclusions and an outlook for further research.

2. On Poisson structures of rank 2

For the sake of completeness and in order to fix some notations, we will recall some well-
known notions on Poisson manifolds, and in particular, we will focus on Poisson structures of
rank 2. For more details see, e.g., [26].

Given a differentiable manifold M, a Poisson structure on M is defined by an antisymmetric
bilinear map {·, ·} which is a derivation on both of its arguments, satisfying moreover the Jacobi
identity. A manifold M endowed with a Poisson structure is called a Poisson manifold.

Thus, it is possible to associate with each function f a unique vector field Xf such that, for
any other function g, we have Xf g = {f, g}. The vector field Xf is called Hamiltonian vector
field associated with the Hamiltonian function f . This association defines an homomorphism
of the Lie algebra (C∞(M), {·, ·}) onto the Lie algebra of vector fields in M. A Casimir
function or Casimir for short, is a function c such that Xc = 0.

Moreover, on every Poisson manifold, there exists a unique twice contravariant
antisymmetric tensor field (called bivector field for short) � such that {f, g} = �(df, dg) for
every pair of functions (f, g). This tensor field is called the Poisson tensor of the structure, and
the manifold M, endowed with its Poisson structure, will be denoted (M,�). The existence
of such a tensor field is due only to the antisymmetry and derivation properties of the Poisson
bracket. The fulfillment of the Jacobi identity for the Poisson bracket is equivalent [27] to the
vanishing of the Schouten–Nijenhuis bracket of � with itself, [�,�] = 0. The Schouten–
Nijenhuis bracket [34, 37] is the unique extension of the Lie bracket of vector fields to the
exterior algebra of multivector fields. Some of its properties are

[P,Q] = −(−1)(p−1)(q−1)[Q,P ]

[P,Q ∧ R] = [P,Q] ∧ R + (−1)(p−1)qQ ∧ [P,R] (1)

[P ∧ R,Q] = P ∧ [R,Q] + (−1)(q−1)r [P,Q] ∧ R

where P,Q,R are completely antisymmetric contravariant tensors of degree p, q, r ,
respectively. For more details and properties on the Schouten–Nijenhuis bracket see, e.g.,
[13, 30, 34, 37] and references therein.

Take a local chart of M, with domain U and associated local coordinates (x1, . . . , xn),
where n = dim M . We will denote by �ij (1 � i, j � n) the components of the Poisson
tensor � in the previous chart. The expression of the Poisson bracket of the restriction of the
two functions f, g to U, also denoted by f, g, reads

{f, g} = �ij

∂f

∂xi

∂f

∂xj

where summation in the repeated indices is understood. In particular we have {xi, xj } = �ij .
The Poisson tensor admits the local expression

� =
n∑

i<j

�ij

∂

∂xi

∧ ∂

∂xj

(2)

in these coordinates.
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Given a Poisson manifold (M,�), it can be defined the fibred morphism �� : T ∗M →
T M such that for any pair of 1-forms α, β, 〈��(α), β〉 = �(α, β). The image of the morphism
��,C = ��(T ∗M), is called the characteristic distribution of the Poisson structure, and the
characteristic space on x ∈ M is the vectorial subspace Cx = �

�
x(T

∗
x M) of TxM . The rank of

the structure on the point x is the rank of �
�
x , i.e., the dimension of Cx . Note that the annihilator

of the characteristic distribution, i.e., C0 = {β ∈ �1(M)|�(β, α) = 0,∀α ∈ �1(M)}, is
ker ��, and we have rank �

�
x + dim ker �

�
x = n, for all x ∈ M . In general, the rank of the

structure varies with x and thus C is not in general a subbundle of T M .
Consider now a Poisson manifold (M,�), dim M = n, such that in the domain of a

local chart (U, φ) the structure has constant rank equal to 2. Theorem 11.5 of chapter III
in [26] (or corollary 2.3 in [41]) assures us that the associated local coordinates, denoted by
(x, y, z1, . . . , zn−2), can be chosen such that for 1 � k, l � n − 2,

{y, x} = 1 {x, zk} = 0 {y, zk} = 0 {zk, zl} = 0. (3)

We are now in a position to prove a simple result, but important for our purposes here:

Proposition 1. Let (M,�) be a Poisson manifold of (locally) constant rank equal to 2. Then,
for each never-vanishing smooth function a ∈ C∞(M), (M, a�) is a Poisson manifold of
(locally) constant rank equal to 2, with the same characteristic distribution.

Proof. We have to prove that the Schouten–Nijenhuis bracket [a�, a�] vanishes, the other
needed properties being obvious. From the paragraph 18.8 of chapter V of [26], we have that

[a�, a�] = 2a��(da) ∧ �.

It suffices to compute the previous expression on a coordinate neighbourhood like that
described in the previous paragraph, with respect to the Poisson tensor � [30]. We have

[a�, a�](dx, dy, dzk) = 2a(��(da) ∧ �)(dx, dy, dzk) = 0 1 � k � n − 2

because zk are Casimir functions of �, and dzk enters at least once as argument of � in all
terms of the previous expression. For other possible arguments, the expression vanishes by
the same reason. �

Example 1. Let M be an n-dimensional manifold and X, Y two vector fields such that for
all x ∈ M , the Lie bracket [X, Y ]x belongs to the subspace of TxM generated by Xx and Yx .
Then, � = X ∧ Y is a Poisson tensor of rank 2 except where X and Y are linearly dependent.
This is easily seen by deducing from the properties of the Schouten–Nijenhuis bracket (1) the
relation [X ∧ Y,X ∧ Y ] = 2X ∧ Y ∧ [X, Y ], see also [1, 13].

Remark. Note that it is essential in proposition 1 the assumption that the initial bivector is
Poisson, which assures the existence of local coordinates satisfying (3). The existence of a
bivector whose rank is always 2 is not enough to conclude that it is a Poisson bivector. A
simple counter-example is the following. Take M = R

3, with coordinates (x, y, z). Let X, Y

be vector fields in the kernel of ydx − xdy + dz given by

X = ∂

∂x
− y

∂

∂z
Y = ∂

∂y
+ x

∂

∂z
.

Then, � = X ∧ Y = ∂
∂x

∧ ∂
∂y

+
(
x ∂

∂x
+ y ∂

∂y

) ∧ ∂
∂z

is an everywhere rank 2 bivector but is not

Poisson, since [X, Y ] = 2 ∂
∂z

and

[�,�] = [X ∧ Y,X ∧ Y ] = 4
∂

∂x
∧ ∂

∂y
∧ ∂

∂z
.

The vector fields X, Y and [X, Y ] in this example close on a Lie algebra isomorphic to the
Heisenberg–Weyl Lie algebra h(3), see, e.g., [16].
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3. Some Poisson structures of rank 2 in R
4 and R

5

We will construct in this section some Poisson structures of rank 2 in R
4 and R

5 by imposing
that the kernel of the corresponding bivectors consists of a set of two and three specific 1-forms,
respectively. Such 1-forms will determine codistributions which are integrable in the sense of
Frobenius. We will prove that the resulting bivectors are in fact Poisson.

3.1. Some Poisson structures of rank 2 in R
4

Consider the Euclidean space R
4, with coordinates (x1, x2, x3, x4). The equations of motion

of the reduced non-holonomic systems encountered in the examples are observed to have
integrals of motion which are related to the solutions of a system of differential equations of
the type

dx3

dx1
= h3(x1, x3, x4)

dx4

dx1
= h4(x1, x3, x4) (4)

where h3, h4 are two given (smooth) functions of their arguments, which do not include x2.
We consider the system (4) as the Pfaffian system ‘θ1 = 0, θ2 = 0’, where the 1-forms θ1, θ2

in R
4 are given by

θ1 = −h3(x1, x3, x4) dx1 + dx3 θ2 = −h4(x1, x3, x4) dx1 + dx4. (5)

These two 1-forms determine a codistribution integrable in the sense of Frobenius [26], since
there exists a set of four 1-forms �

j

i such that dθi = �
j

i ∧ θj for i, j = 1, 2. For example, we
can take

�1
1 = ∂h3

∂x3
dx1 �2

1 = ∂h3

∂x4
dx1 �1

2 = ∂h4

∂x3
dx1 �2

2 = ∂h4

∂x4
dx1 (6)

in order to satisfy the integrability condition. Thus, there will exist (locally) functions c1, c2

and 	
j

i such that dci = 	
j

i θj , i, j = 1, 2. The subvarieties solution of the Pfaffian system
‘θ1 = 0, θ2 = 0’ are defined by the equations ci = bi , where bi are constants, i = 1, 2.

More specifically, in the actual examples, the system (4) takes the form of a non-
autonomous first-order system of linear differential equations

dx3

dx1
= a11(x1)x3 + a12(x1)x4

dx4

dx1
= a21(x1)x3 + a22(x1)x4

or, written in matrix form

d

dx1

(
x3

x4

)
= A(x1)

(
x3

x4

)
(7)

where

A(x1) =
(

a11(x1) a12(x1)

a21(x1) a22(x1)

)
.

The previous functions ci can be identified with the initial conditions of the solution of (7). In
fact, such a solution can be expressed as x = g(x1)c, where x = (x3, x4)

T, c = (c1, c2)
T, and

g(x1) is a GL(2, R)-valued curve (SL(2, R)-valued curve if tr A(x1) = 0 for all x1), solution
of the right-invariant matrix system (see, e.g., [14, 15])

dg

dx1
g−1 = A(x1). (8)

Then, c = g−1(x1)x gives the desired functions: with a slight abuse of notation, we have

dc = (dg−1)x + g−1 dx = −g−1 dgg−1x + g−1Ax dx1 = −g−1 dgg−1x + g−1 dgg−1x = 0
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where we have used that dg−1 = −g−1 dgg−1 and A dx1 = dgg−1. However, note that the
solution of (8) cannot be expressed in an explicit way in the general case, and therefore, the
functions c1, c2 cannot be explicitly written in general.

Now, we impose that the 1-forms (5) generate the kernel of the bivector in R
4

� =
∑

1�i<j�4

�ij

∂

∂xi

∧ ∂

∂xj

. (9)

The resulting bivectors will clearly have rank 2. Moreover, they are Poisson, according to the
following result:

Theorem 1. Consider in R
4 a bivector of type (9), such that ��(θ1) = 0,��(θ2) = 0, where

θ1, θ2 are given by (5). Then the bivector is of the form

� = −�12U ∧ V

where

U = ∂

∂x2
V = ∂

∂x1
+ h3

∂

∂x3
+ h4

∂

∂x4
(10)

and �12 ∈ C∞(R4). Each of these bivectors is Poisson, and of rank 2 on points where
�12 	= 0.

Proof. The case of �12 = 0 is trivial. We will assume �12 	= 0 in the domain of interest.
Take � and θ1, θ2, as stated. The conditions ��(θ1) = 0,��(θ2) = 0 give rise to an algebraic
system for the six independent functions �ij , which can easily be solved for five of them, in
terms of the remaining one and the functions entering into the 1-forms. We choose �12 to be
the undetermined function. Then the solution reads

�13 = �14 = �34 = 0 �23 = −�12h3 �24 = −�12h4

thus the resulting bivectors are as claimed. To see that each of them is Poisson, consider the
bivector of the family with �12 = −1, i.e., U ∧ V . This bivector is of the form given in
example 1, and [U,V ] = 0, thus U ∧ V is Poisson. It is moreover of rank 2, therefore by
proposition 1, the claim follows. �

Remark. Note that the vector fields U,V of the previous theorem satisfy θi(U) = θi(V ) = 0,

i = 1, 2, which in principle might seem a stronger condition than that the bivector (9)
annihilates the 1-forms θ1, θ2.

Now, given a (Hamiltonian) function H ∈ C∞(R4), the Hamiltonian vector field XH with
respect to a Poisson structure of the family described in theorem 1 takes the form

XH = ��(dH) = �12 [(V H)U − (UH)V ] (11)

where U and V are given by (10). Obviously, H is a first integral of XH , since
XH H = �(dH, dH) = 0. Other two first integrals are the functions ci such that dci = 	

j

i θj ,
since by construction XH(ci) = �(dH, dci) = 	

j

i �(dH, θj ) = 0, i = 1, 2. These two first
integrals are common to all Hamiltonian vector fields of type (11).

On the other hand, given a specific vector field X in R
4, which is recognized to be of

the form (11), it could be regarded as a Hamiltonian vector field with respect to one specific
Poisson structure of the family described in theorem 1.
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3.2. Some Poisson structures of rank 2 in R
5

We will treat in this section analogous questions to that of the previous section, but now in the
Euclidean space R

5, with coordinates (x1, x2, x3, x4, x5).
The motivation is that typically, the reduced orbit spaces for the non-holonomic problems

of interest, are semialgebraic varieties of R
5, essentially determined by the zero-level set

of a function φ ∈ C∞(R5), quadratic in its arguments, which are moreover subject to
certain constraints. More specifically, in the examples it will have the form φ(x) = 0, with
φ(x) = x2

2 + x2
3 − (

1 − x2
1

)
x5, |x1| � 1, and x5 � 0, or with φ(x) = x2

2 + x2
3 − 4x1x5, x1 � 0,

and x5 � 0. However, for what follows φ can be in principle any differentiable function
in R

5.
We will consider then the Pfaffian system ‘θ0 = 0, θ1 = 0, θ2 = 0’, where θ0 = dφ and

θ1, θ2 are 1-forms in R
5 whose coordinate expression is again (5). These three 1-forms also

determine a codistribution integrable in the sense of Frobenius in R
5, because we have again

dθi = �
j

i ∧ θj with (6), i, j = 1, 2, and dθ0 = d2φ = 0.
We impose now that ker �� = span{θ0, θ1, θ2}, where � is the bivector in (some open set

of ) R
5

� =
∑

1�i<j�5

�ij

∂

∂xi

∧ ∂

∂xj

. (12)

The resulting bivectors are again generically of rank 2 and Poisson, as follows:

Theorem 2. Consider in R
5 a bivector of type (12), such that ��(θ0) = 0,��(θ1) = 0 and

��(θ2) = 0, where θ0 = dφ, and θ1, θ2 are given by (5). Then the bivector is of the form

� = f [(Zφ)U ∧ V + Y ∧ Z] (13)

where

U = ∂

∂x2
V = ∂

∂x1
+ h3

∂

∂x3
+ h4

∂

∂x4
Z = ∂

∂x5
(14)

Y = (Uφ)V − (V φ)U (15)

and f ∈ C∞(R5). Each of these bivectors is Poisson, and of rank 2 on points where f 	= 0.

Proof. Once more, the case of f = 0 is trivial, thus we will assume again that f 	= 0 in the
domain of interest. Take �, θ0, θ1 and θ2 as stated. The idea of the proof is similar to that of
theorem 1. First of all, since the kernel of �� has generically dimension 3, then the rank of ��

is 2. The conditions ��(θ0) = 0,��(θ1) = 0 and ��(θ2) = 0 give rise again to an algebraic
system for the functions �ij , out of which all can be solved for except one of them, namely
�12, which we will write as −(∂φ/∂x5)f . The solution then reads

�13 = �14 = �34 = 0 �23 = f h3
∂φ

∂x5
�24 = f h4

∂φ

∂x5

�15 = f
∂φ

∂x2
�35 = f h3

∂φ

∂x2

�45 = f h4
∂φ

∂x2
�25 = −f

(
∂φ

∂x1
+ h3

∂φ

∂x3
+ h4

∂φ

∂x4

)

thus the resulting bivectors take the stated form. To see that each of them is Poisson, consider
the bivector of the family with f = 1, i.e., �0 = U ∧ V + Y ∧ Z, where U = (Zφ)U . We
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have to show that the Schouten–Nijenhuis bracket of �0 with itself vanish, i.e., [�0,�0] = 0.
By linearity and using the first property of (1) we have

[�0,�0] = [U ∧ V,U ∧ V ] + 2[U ∧ V, Y ∧ Z] + [Y ∧ Z, Y ∧ Z].

By example 1 we know that [U ∧ V,U ∧ V ] = 2U ∧ V ∧ [U,V ] and analogously,
[Y ∧ Z, Y ∧ Z] = 2Y ∧ Z ∧ [Y,Z]. Now, using again the second and third properties
of (1) we can write

[U ∧ V, Y ∧ Z] = V ∧ Z ∧ [U, Y ] − U ∧ Z ∧ [V, Y ] + Y ∧ V ∧ [U,Z] − Y ∧ U ∧ [V,Z].

We have to calculate now some Lie brackets. We have [U,V ] = [V,Z] = [U,Z] = 0 but

[U,V ] = −[V (Zφ)]U [Y,Z] = −[Z(Uφ)]V + [Z(V φ)]U

[U, Y ] = (Zφ)[U(Uφ)]V − {(Zφ)[U(V φ)] + (Uφ)[V (Zφ)] − (V φ)[U(Zφ)]}U
[V, Y ] = [V (Uφ)]V − [V (V φ)]U [U,Z] = −[Z(Zφ)]U.

Then, summing up, we have

[�0,�0] = 2U ∧ V ∧ Z{(Zφ)([V,U ]φ) + (Uφ)([Z,V ]φ) + (V φ)([U,Z]φ)} = 0.

Since the rank of any of the �, and in particular �0, is 2, applying proposition 1 ends the
proof. �

Remark. Note that the vector fields U,V, Y and Z of theorem 2 satisfy θi(U) = θi(V ) =
θi(Y ) = θi(Z) = 0, i = 1, 2, θ0(Y ) = Y (φ) = 0 and (U ∧V )φ −Y = 0. These requirements
might seem a priori to be stronger conditions to that imposed in the theorem.

If we are given now a (Hamiltonian) function H ∈ C∞(R5), the Hamiltonian vector field
XH with respect to a Poisson structure of the family described in theorem 2 reads, using (15),

XH = ��(dH) = f {[(ZH)(V φ) − (Zφ)(V H)]U + [(Zφ)(UH) − (ZH)(Uφ)]V

+ [(Uφ)(V H) − (V φ)(UH)]Z} (16)

where U,V and Z are given by (14). By construction H is a first integral of XH . Other first
integrals are the functions ci such that dci = 	

j

i θj , as in the previous section. These two first
integrals are common to all Hamiltonian vector fields of type (16).

However, given a specific vector field XH of type (16), it fixes the specific function f

and therefore the specific Poisson bivector of the family (13) with respect to which XH is
Hamiltonian.

4. Examples

In this section, we will show how the preceding results can be directly applied in the cases
of reduced systems corresponding to specific examples of non-holonomic systems, i.e., the
rolling disc, the Routh’s sphere, the ball rolling on a surface of revolution and its special case
of a ball rolling inside a cylinder.

4.1. The rolling disc

For this example we will follow the treatment and use some of the results of [18], see details
therein. This problem has been treated as well, e.g., in [4, 7, 19, 33, 35]. Consider a
homogeneous disc, which rolls without slipping on a horizontal plane under the influence of a
vertical gravitational field of strenght g. The resulting non-holonomic system has two evident
symmetry groups. One is the symmetry group E(2) consisting of translations in the horizontal
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plane and rotations about the vertical axis, and the second is the S1 symmetry consisting of
rotations about the principal axis perpendicular to the plane of the disc.

After these two symmetries have been reduced out, in particular by using invariant theory
for the reduction of the S1 symmetry, it is obtained a system giving the evolution on the
reduced orbit space, which is a semialgebraic variety of R

5. In particular, the system can be
restricted to a smooth open subset as it has been done in [18].

Thus, consider a reference homogeneous disc of radius r and mass m, lying flat in a fixed
reference frame with centre of mass at the origin. The position of the moving disc is given by
transforming the position of the reference disc by means of a translation a (e.g., of the centre
of mass) and a rotation A. The tensor of inertia I with respect to the principal axes of the disc
is diagonal, I = diag(I1, I1, I3). Let us call e3 the vertical unitary vector in the fixed frame
of reference. We define the unitary vector u with respect to that frame as the pre-image of
−e3 under the rotation A, u = −A−1e3. The vector s in the fixed disc, rotated by A gives
the vector in the moving disc pointing from the centre of mass to the point of contact of the
moving disc with the horizontal plane. If we denote û = u − 〈u, e3〉e3, the relation between s
and u is s = rû/|û|. We denote by (ω1, ω2, ω3) the components of the angular velocity vector
ω of the disc.

Following [18], after the mentioned symmetry group E(2) is reduced, the equations of
motion read
d(Iω)

dt
= Iω × ω − mr2 dω

dt
+ m

〈
dω

dt
, s

〉
s + m〈s, ω〉ds

dt
+ m〈ω, s〉(ω × s) − mg(u × s)

(17)
du

dt
= u × ω

which have a first integral given by the total energy of the disc

H = 1
2 〈Iω, ω〉 + 1

2 〈ω × s, ω × s〉 + mg〈s, u〉. (18)

The second of equations (17) expresses the non-holonomic constraint of rolling without
slipping, i.e., instantaneous velocity of the point of contact equal to zero.

We recall briefly now how the further reduction of the S1 symmetry is performed. Let us
denote by (u1, u2, u3) the components of u. The S1 symmetry action consists of rotating both
vectors u and ω simultaneously as mentioned, and it is not a free action since the isotropy
subgroup of pairs ((0, 0,±1), (0, 0, ω3)) is S1. Thus, we will use invariant theory in order to
perform the reduction. A set of invariants for this action is easily constructed [18]:

σ1 = u3 σ2 = u2ω1 − u1ω2 σ3 = u1ω1 + u2ω2

σ4 = ω3 σ5 = ω2
1 + ω2

2 σ6 = u2
1 + u2

2

(19)

with the relations

σ 2
2 + σ 2

3 = σ5σ6 σ5 � 0 σ6 � 0. (20)

Since u is a unitary vector, we have that σ6 +σ 2
1 = 1 and |σ1| � 1, thus the completely reduced

orbit space M is the semialgebraic variety of R
5

M = {(σ1, . . . , σ5) ∈ R
5 | φ(σ) = 0, |σ1| � 1, σ5 � 0} (21)

where φ ∈ C∞(R5) is the polynomial function φ(σ) = σ 2
2 + σ 2

3 − (
1 − σ 2

1

)
σ5. However, M

is not a smooth submanifold of R
5. The singular points of M are

�± = {(±1, 0, 0, σ4, σ5) ∈ R
5 | σ4 ∈ R, σ5 � 0}. (22)

The non-smoothness of M is due to the fact that the S1 action is not free, see [17].
The somehow redundant variables (σ1, σ2, σ3, σ4, σ5) therefore parametrize the reduced

orbit space M. The induced system from (17) will be written in terms of the orbit variables:
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simply calculating their time derivatives, using the equations of motion (17) and that I1 = 1
4mr2

and I3 = 1
2mr2, we arrive to the following system:

σ̇1 = σ2

σ̇2 = 6

5
σ3σ4 − σ1σ5 +

4

5

σ1σ
2
3

1 − σ 2
1

+ λσ1

√
1 − σ 2

1

σ̇3 = −2σ2σ4 (23)

σ̇4 = −2

3

1

1 − σ 2
1

σ2σ3

σ̇5 = 2σ2

(
λσ1√
1 − σ 2

1

+
4

5

σ1σ
2
3(

1 − σ 2
1

)2 − 4

5

σ3σ4

1 − σ 2
1

)

where λ = 4
5

g

r
and the dot means derivative with respect to time. The reduced energy, obtained

from (18), reads

E = σ5

2
+

3

4
σ 2

4 − 2

5

σ 2
3

1 − σ 2
1

+ λ

√
1 − σ 2

1 . (24)

Although in principle expressions (23) and (24) are only defined on M, their right-hand sides
make sense for D = R

5\({(±1, σ2, σ3, σ4, σ5) | σ2σ3 	= 0}∪ {(σ1, σ2, σ3, σ4, σ5) | |σ1| > 1}),
so we will consider this extended domain for the vector field X whose integral curves are given
by (23) and the reduced energy function E.

However, if we restrict ourselves to the original domain M, and moreover to points with
|σ1| < 1, we can define a smooth open dense subset M ⊂ M given by

M =
{

(σ1, σ2, σ3, σ4, σ5) ∈ R
5

∣∣∣∣∣ σ5 = σ 2
2 + σ 2

3

1 − σ 2
1

, |σ1| < 1

}
(25)

diffeomorphic to R
4 [18]. The induced vector field X and energy E on M can be easily found

from (23) and (24) by solving for σ5. The integral curves of X are the solutions of the system

σ̇1 = σ2

σ̇2 = 6

5
σ3σ4 − σ1

1 − σ 2
1

σ 2
2 − 1

5

σ1

1 − σ 2
1

σ 2
3 + λσ1

√
1 − σ 2

1

σ̇3 = −2σ2σ4

σ̇4 = −2

3

1

1 − σ 2
1

σ2σ3

(26)

meanwhile

E = 1

2

σ 2
2

1 − σ 2
1

+
1

10

σ 2
3

1 − σ 2
1

+
3

5
σ 2

4 + λ

√
1 − σ 2

1 . (27)

These expressions are equations (18) and (19) of [18], respectively.
The reduced vector field X satisfies X(E) = 0 as well as X(φ) = 0 in D, meanwhile

X(E) = 0 in M . In addition, X has a family of equilibrium points belonging to the singular set
�±, called singular equilibria, given by {(±1, 0, 0, σ4, 0) | σ4 ∈ R}, and a family of regular
equilibria given by the set of constants{
(σ10, 0, σ30, σ40, σ50) ∈ D

∣∣∣∣ 6

5
σ30σ40 − σ10σ50 +

4

5

σ10σ
2
30

1 − σ 2
10

+ λσ10

√
1 − σ 2

10 = 0

}
.

These regular equilibria, in the original system, correspond to periodic motions of the disc
in which the point of contact describes a circle and the centre of mass stands at a constant
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height. These motions are contained in the set of steady motions of the rolling disc, according
to Routh’s terminology [33, 35]. They have received an extensive treatment in [18], although
by using the system (26).

Now, both of the systems (23) and (26) admit two first integrals related to the solutions
(in the sense explained in section 3.1) of the non-autonomous linear system

dσ3

dσ1
= −2σ4

dσ4

dσ1
= −2

3

σ3

1 − σ 2
1

(28)

which can be written in matrix form as

d

dσ1

(
σ3

σ4

)
=

(
0 −2

− 2
3

1
1−σ 2

1
0

) (
σ3

σ4

)
. (29)

This equation is the same as equation (69) of [18], where its solutions have been studied in
great detail, including their asymptotic behaviour.

However, the important point for us is that the systems (23) and (26) are good candidates to
be formulated as Hamiltonian systems with respect to Poisson structures of the type described
in theorems 2 and 1, respectively. Let θ0 = dφ and θ1, θ2 be the 1-forms, defined in M

(resp. D) by

θ1 = 2σ4 dσ1 + dσ3 θ2 = 2

3

σ3

1 − σ 2
1

dσ1 + dσ4.

Applying the results of sections 3.1 and 3.2 to these 1-forms, we have

Proposition 2. The bivectors of the form � = −�12U ∧ V , defined in M , where

U = ∂

∂σ2
V = ∂

∂σ1
− 2σ4

∂

∂σ3
− 2

3

σ3

1 − σ 2
1

∂

∂σ4
(30)

and �12 ∈ C∞(M) is a non-vanishing function, are Poisson tensors of rank 2 in M .
The vector field X in M , whose integral curves are the solutions of (26), is a Hamiltonian

vector field with respect to the Poisson bivector � with the specific function �12 = 1 − σ 2
1

and Hamiltonian function E given by (27), i.e., X = �
�
(dE) in M .

Proposition 3. The bivectors � = f [(Zφ)U ∧ V + Y ∧ Z], defined in D ⊂ R
5, where U and

V are given by (30), Z = ∂/∂σ5, Y = (Uφ)V − (V φ)U , and f ∈ C∞(D) is a non-vanishing
function, are Poisson tensors of rank 2 in D, except in the set of singular equilibria, where
they vanish.

The vector field X in D, whose integral curves are the solutions of (23), is a Hamiltonian
vector field with respect to the Poisson bivector � with the specific function f = 1 and
Hamiltonian function E given by (24), i.e., X = ��(dE) in D.

Both propositions can be proved by direct computations.
The Poisson Hamiltonian structure of the systems (23) and (26) could be used to have an

interpretation of their geometry. For example, the invariant submanifolds mentioned in the
analysis of the reduced vector field (26) in [18], could be understood as the symplectic leaves
of the rank-two Poisson structure(s) � of proposition 2.

4.2. Routh’s sphere

For this example, we will follow the treatment and use some of the results of [17], see details
therein. This problem has been treated as well, e.g., in [4, 7, 20, 33, 35]. Consider a sphere
of mass m and radius r with its centre of mass at a distance α (0 < α < r) from its geometric
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centre. The line joining both centres is a principal axis of inertia, with associated moment of
inertia I3. Any axis orthogonal to the previous, passing through the geometric centre, has an
associated moment of inertia I1. This sphere is supposed to roll on a horizontal plane under the
influence of a vertical gravitational field of strenght g. The resulting non-holonomic system
has as well two symmetry groups. One is again the group E(2) consisting of translations
in the horizontal plane and rotations about the vertical axis. The other is the S1 symmetry
consisting of rotations about the principal axis of inertia which joins the centre of mass and
the geometric centre of the ball.

Again, after these symmetries have been reduced out by a similar procedure to that of
the rolling disc, it is obtained a system giving the evolution on the reduced orbit space, which
coincides with that of the rolling disc.

Therefore, let us consider a reference ball as the one described, with the geometric centre
at the origin, and the centre of mass at the point −αe3, where e3 denotes the vertical unitary
vector in this fixed frame. The position and attitude of the moving ball is given by transforming
the position of the reference ball by means of a translation a (e.g., of the centre of mass) and
a rotation A. We denote by s the vector in the fixed sphere such that rotated by A gives the
vector in the moving sphere pointing from the centre of mass to the point of contact. The
unitary vector u in the fixed frame is the pre-image of −e3 under the rotation A, u = −A−1e3.
The relation between u and s is a3 = 〈s, u〉. The components of the angular velocity ω of the
ball will be denoted by (ω1, ω2, ω3).

Following [17], after the reduction of the mentioned E(2) symmetry, the equations of
motion read
d

dt
(Iω + ms × (ω × s)) = Iω × ω + m

ds

dt
× (ω × s) + m〈ω, s〉(ω × s) + mg(u × s)

du

dt
= u × ω

(31)

which have a first integral given by the total energy of the ball

H = 1
2 〈Iω, ω〉 + 1

2 〈ω × s, ω × s〉 + mg〈s, u〉. (32)

The second of equations (31) expresses again the non-holonomic constraint of rolling without
slipping.

Now, the reduction of the S1 symmetry is performed in an analogous way as in the case of
the rolling disc, see section 4.1, where (u1, u2, u3) denote as well the components of u. The S1

action consists of rotating both vectors u, ω simultaneously, with respect to the principal axis
joining the geometric and mass centres. This action is not free, since S1 leaves invariant pairs
of vectors of the form ((0, 0,±1), (0, 0, ω3)). The corresponding set of invariants is again
(19) with the relations (20). Thus, the reduced orbit space M is the semialgebraic variety of
R

5 described in the previous example of the rolling disc, with the same notations.
However, the reduced system reads now, using (31),

σ̇1 = σ2

T (σ1)σ̇2 = (I3 + mr2 + mrασ1)σ3σ4 − mgα
(
1 − σ 2

1

)
− σ5

(
mrα + (I1 + mα2 + mr2)σ1 + mrασ 2

1

)
σ̇3 = −I3

σ2σ4

P(σ1)
(I3 + mr2 + mrασ1)

σ̇4 = −mr
σ2σ4

P(σ1)
(I3α + r(I3 − I1)σ1)

T (σ1)σ̇5 = −2mrασ2σ5 − 2mgασ2 − 2mr2(I3 − I1)
I3 + mr2 + mrασ1

P(σ1)
σ2σ3σ4

(33)
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where P(σ1) = I1I3 +mr2I1
(
1−σ 2

1

)
+mI3(α + rσ1)

2 and T (σ1) = I1 +mr2 +mα2 + 2mrασ1.
The reduced energy is

E = 1
2 (T (σ1)σ5 + (I3 + mr2)σ 2

4 − mr2(σ3 + σ1σ4)
2) + mα(gσ1 − rσ3σ4). (34)

These are equations (23), (24) and (25) in [17]. In this case expressions (33) and (34) make
sense for all D = R

5. We will consider this extended domain for the vector field X whose
integral curves are given by (33) and for the reduced energy function E.

Restricting ourselves to points in M with |σ1| < 1, we find again the smooth submanifold
M ⊂ M given by (25). The integral curves of the projected vector field X are the solutions of
the system ([17], equation (38))

σ̇1 = σ2

T (σ1)σ̇2 = (I3 + mr2 + mrασ1)σ3σ4 − mgα
(
1 − σ 2

1

)
− σ 2

2 + σ 2
3

1 − σ 2
1

(
mrα + (I1 + mα2 + mr2)σ1 + mrασ 2

1

)
σ̇3 = −I3

σ2σ4

P(σ1)
(I3 + mr2 + mrασ1)

σ̇4 = −mr
σ2σ4

P(σ1)
(I3α + r(I3 − I1)σ1)

(35)

and the restricted reduced energy E is

E = 1

2

(
T (σ1)

σ 2
2 + σ 2

3

1 − σ 2
1

+ (I3 + mr2)σ 2
4 − mr2(σ3 + σ1σ4)

2

)
+ mα(gσ1 − rσ3σ4). (36)

The reduced vector field X satisfies X(E) = 0 and X(φ) = 0 in D, and X(E) = 0 in M .
Moreover, X has a family of singular equilibrium points, belonging to the singular set �±,
given by {(±1, 0, 0, σ4, 0) | σ4 ∈ R}, which physically correspond to the spinning of the ball
about its symmetry axis when it is vertical (then the reduced energy becomes 1

2I3σ
2
4 ± mgα).

It has as well a family of regular equilibria given by the set of constants

{(σ10, 0, σ30, σ40, σ50) ∈ R
5 | b(σ10, σ30, σ40, σ50) = 0}

where b(σ1, σ3, σ4, σ5) = (I3 + mr2 + mrασ1)σ3σ4 − mgα
(
1 − σ 2

1

) − σ5
(
mrα + (I1 + mα2 +

mr2)σ1 + mrασ 2
1

)
. These regular equilibria, in the original system, correspond to periodic

motions of the ball in which the point of contact describes a circle and the centre of mass
stands at constant height.

In this case, both of the systems (33) and (35) admit two first integrals related to the
solutions (in the sense of section 3.1) of the non-autonomous linear system

dσ3

dσ1
= −I3(I3 + mr(r + ασ1))σ4

P(σ1)

dσ4

dσ1
= mr(I1rσ1 − I3(α + rσ1))σ4

P(σ1)
. (37)

Thus, the mentioned systems are other good candidates on which to apply the Poisson approach
of section 3. Let θ0 = dφ and θ1, θ2 be the 1-forms, defined in M (resp. D) by

θ1 = I3(I3 + mr(r + ασ1))σ4

P(σ1)
dσ1 + dσ3

θ2 = −mr(I1rσ1 − I3(α + rσ1))σ4

P(σ1)
dσ1 + dσ4.
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We have the following results:

Proposition 4. The bivectors of the form � = −�12U ∧ V , defined in M , where U = ∂/∂σ2,

V = ∂

∂σ1
− I3(I3 + mr(r + ασ1))σ4

P(σ1)

∂

∂σ3
+

mr(I1rσ1 − I3(α + rσ1))σ4

P(σ1)

∂

∂σ4
(38)

and �12 ∈ C∞(M) is a non-vanishing function, are Poisson tensors of rank 2 in M .
The vector field X in M , whose integral curves are the solutions of (35), is a

Hamiltonian vector field with respect to the Poisson bivector � with the specific function

�12 = (
1 − σ 2

1

)/
T (σ1) and Hamiltonian function E given by (36), i.e., X = �

�
(dE) in M .

Proposition 5. The bivectors � = f [(Zφ)U ∧ V + Y ∧ Z], defined in D = R
5, where U

and V are given as in proposition 4, Z = ∂/∂σ5, Y = (Uφ)V − (V φ)U , and f ∈ C∞(D)

is a non-vanishing function, are Poisson tensors of rank 2 in D, except in the set of singular
equilibria, where they vanish.

The vector field X in D, whose integral curves are the solutions of (33), is a Hamiltonian
vector field with respect to the Poisson bivector � with the specific function f = 1/T (σ1) and
Hamiltonian function E given by (34), i.e., X = ��(dE) in D.

Both propositions can be proved as well by direct computations.
In this case, equations (37) can be explicitly integrated in an easy way. From the second

of these equations we have the relation σ4
√

P(σ1) = k. Substituting into the first, we can also
integrate to obtain the relation I1rσ3 + I3(α + rσ1)σ4 = j . The constants k, j are integration
constants (essentially the initial conditions of the system (37)). These two expressions are the
desired first integrals (Casimir functions of the preceding Poisson structures). The second of
them is known as Jellet’s integral, see [17, 20] and references therein, see also p 184 of [7].

The invariant submanifolds thoroughly studied in [17], could be interpreted in this
framework as the symplectic leaves of the rank-2 Poisson structure(s) � of proposition 4,
determined by the level sets of the first integrals j and k.

4.3. Ball rolling on a surface of revolution

For this example we will follow the treatment and use some results of [25], see therein for
more details. This problem has been treated as well, e.g., in [8, 33, 35]. In particular Routh, in
the last of these references, noted the existence of two integrals of motion given by a system
of two linear differential equations, solved them in special cases, and described a family of
stationary periodic motions together with a necessary condition for their stability. Later, in
[42], it has been shown that the condition is also sufficient. Both of [25] and [42] prove that
the corresponding reduced system has integral curves consisting of either periodic orbits or
equilibrium points.

Consider a homogeneous ball of mass m, radius r and moment of inertia M with respect
to any principal axis. The ball rolls without slipping on a surface of revolution, under the
influence of a vertical gravitational field of strength g. We take the origin of coordinates at
a point of the axis of symmetry of the surface (the intersection of this axis with the surface
at its vertex), and we consider a horizontal plane passing through it. We parametrize the
position of the centre of mass of the ball by its coordinates (a1, a2) on this horizontal plane,
and its height will be parametrized via the smooth profile function ϕ : R → R of the surface,
a3 = ϕ

(√
a2

1 + a2
2

)
. Note that not all surfaces of revolution can be parametrized well in this

way, e.g., the cylinder, which requires a separate treatment, see section 4.4 below. We will
assume that ϕ is a smooth even function, thus we will have that ϕ(2k+1)(0) = 0, k = 0, 1, 2, . . . .
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We denote by (ω1, ω2, ω3) the components of the angular velocity vector ω of the ball, and
(γ1, γ2, γ3) the components of a unit vector γ normal to the surface at the point of contact
(directed towards the centre of the ball). The unit vector in the vertical coordinate axis is e3.

The equations of motion can be easily computed by the classical equations of the variation
of the angular momentum, and implementing the non-holonomic constraint of non-slipping
of the point of contact, i.e., that its instantaneous velocity vanishes. They read (with respect
to the centre of mass of the ball, compare with equations (5), (7) of [25] and section 2 of [8])

M
dω

dt
− mr2

(
d

dt
(ω × γ )

)
× γ − mgre3 × γ = 0

ȧ − r(ω × γ ) = 0.

(39)

The total mechanical energy of this system is then

H = 1
2 ((M + mr2)(ω · ω) − mr2(γ · ω)2) + mga3 (40)

and is a first integral for the system (39).
The system (39) and the energy (40) admit a further reduction of the S1 symmetry

consisting of rotations of the system about the vertical axis, and thus rotating both of ω and γ

simultaneously. This action, as in the previous cases, is not free, since the isotropy subgroup of
pairs ((0, 0, 1), (0, 0, ω3)) is S1 (these pairs correspond to motions of the ball spinning around
the vertical axis when being at the vertex of the surface), and we will use again invariant theory
in order to perform the reduction, but now as it has been done in [25]. First of all, we define
the vector v and the scalar w as follows: v = r(ω × γ ),w = −r(ω · γ ). Then, a full set of
invariant polynomials, which parametrize the orbit space of the S1 action, is

p1 = 1
2

(
a2

1 + a2
2

)
p2 = a1v1 + a2v2 p3 = a1v2 − a2v1

p4 = w p5 = 1
2

(
v2

1 + v2
2

) (41)

with the relations

p2
2 + p2

3 − 4p1p5 = 0 p1 � 0 p5 � 0. (42)

Therefore, the completely reduced orbit space P is now the semialgebraic variety of R
5

P = {(p1, . . . , p5) ∈ R
5 | φ(p) = 0, p1 � 0, p5 � 0} (43)

where now φ ∈ C∞(R5) is the polynomial function φ(p) = p2
2 +p2

3 −4p1p5. P is not a smooth
submanifold of R

5, because the previous S1 action is not free. Instead, P is homeomorphic
to a cone in R

4 times R [25], which can easily be seen from the relation φ(p) = 0 when it
is written as p2

2 + p2
3 + (p1 − p5)

2 = (p1 + p5)
2. The vertex of the cone is determined by

p2 = p3 = p1 = p5 = 0, therefore the singular points of P are

� = {(0, 0, 0, p4, 0) ∈ P | p4 ∈ R}.
Calculating the time derivatives of the invariants, using (39), and the relations

γ1 = − a1√
2p1

ϕ′√
1 + ϕ′2 γ2 = − a2√

2p1

ϕ′√
1 + ϕ′2 γ3 = 1√

1 + ϕ′2

(we will use the notation ϕ = ϕ(
√

2p1), ϕ
′ = ϕ′(

√
2p1) and ϕ′′ = ϕ′′(

√
2p1) in what follows)

we arrive to the system in the reduced orbit space P

ṗ1 = p2

ṗ2 = 1

1 + ϕ′

{
− M

αr2
p3p4

ϕ′
√

2p1
− mg

α

√
2p1ϕ

′ + 2p5 − p2
2

ϕ′
√

2p1

(
ϕ′′ − ϕ′

√
2p1

)}
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ṗ3 = M

αr2
p2p4

ϕ′′

1 + ϕ′2

ṗ4 = −p2p3

2p1

(
ϕ′′

1 + ϕ′2 − ϕ′
√

2p1

)

ṗ5 = p2

1 + ϕ′

{
1

2p1

(
M

αr2
p3p4 − p2

2
ϕ′

√
2p1

) (
ϕ′′ − ϕ′

√
2p1

)
− mg

α

ϕ′
√

2p1
− 2p5

ϕ′2

2p1

}
(44)

and the reduced energy

E = M

2r2
p2

4 + αp5 +
αϕ′2

4p1
p2

2 + mgϕ (45)

where α = M + mr2

r2 . These are the equations found in lemmas 2.2 and 2.3 (i) of [25].
We observe that the right-hand sides of (44) and (45) make sense in an open set D of R

5

larger than P, namely D = R
5\{(p1, p2, p3, p4, p5) | p1 < 0}. This is due to the fact that they

are defined in the limit p1 → 0+, because of the assumption that the odd-order derivatives at
0 of ϕ vanish. (For points strictly in P with p1 = 0 this assumption would not be necessary,
since these points also have p2 = 0, p3 = 0.) We will consider the enlarged domain D for the
vector field X whose integral curves are the solutions of (44), and also for the reduced energy
(45), compare with p 500 of [25].

The regular stratum of P, i.e., P \�, can be covered by two charts [23], whose
corresponding neighbourhoods can be chosen to be the smooth open dense subsets P 1, P 2 ⊂ P

given by

P 1 =
{
(p1, p2, p3, p4, p5) ∈ R

5

∣∣∣∣p5 = p2
2 + p2

3

4p1
, p1 > 0

}

P 2 =
{
(p1, p2, p3, p4, p5) ∈ R

5

∣∣∣∣p1 = p2
2 + p2

3

4p5
, p5 > 0

}
.

(46)

However, for our purposes here, it will be enough to consider just P 1, in order to endow it
with Poisson structures of the type described in theorem 1, which afterwards could be compared
with the Poisson structure given originally in [8]. The procedure for P 2 is analogous. Thus,
we will consider the induced vector field X and energy E on P 1, which can be found from
(44) and (45) by solving for p5. The integral curves of X are the solutions of the system

ṗ1 = p2

ṗ2 = 1

1 + ϕ′

{
− M

αr2
p3p4

ϕ′
√

2p1
− mg

α

√
2p1ϕ

′ +
p2

2 + p2
3

2p1
− p2

2
ϕ′

√
2p1

(
ϕ′′ − ϕ′

√
2p1

)}

ṗ3 = M

αr2
p2p4

ϕ′′

1 + ϕ′2 (47)

ṗ4 = −p2p3

2p1

(
ϕ′′

1 + ϕ′2 − ϕ′
√

2p1

)
meanwhile

E = M

2r2
p2

4 + α
p2

2 + p2
3

4p1
+

αϕ′2

4p1
p2

2 + mgϕ. (48)

Now, the reduced vector field X satisfies X(E) = 0 and X(φ) = 0 in D, and X(E) = 0 in
P 1. The vector field X has a family of singular equilibrium points consisting of the singular set
�, that is, {(0, 0, 0, p4, 0) | p4 ∈ R}, which as already mentioned, correspond to the spinning
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of the ball about the vertical when being at the vertex of the surface (then the reduced energy
becomes M

2r2 p
2
4 + mgϕ(0)). X has as well a family of regular equilibria given by the set of

constants{
(p10, 0, p30, p40, p50) ∈ D

∣∣∣∣∣ 2p50 − mg

α

√
2p10ϕ

′(√2p10
) − M

αr2

ϕ′(√2p10
)

√
2p10

p30p40 = 0

}
.

These regular equilibria correspond in the original system to rotations of the ball along a
parallel of the surface of revolution at constant height.

In addition, both of the systems (44) and (47) admit two first integrals of motion related
to the solutions (in the sense explained in section 3.1) of the non-autonomous linear system
(see also [25], lemma 2.3. (ii))

dp3

dp1
= M

αr2
p4

ϕ′′

1 + ϕ′2
dp4

dp1
= − p3

2p1

(
ϕ′′

1 + ϕ′2 − ϕ′
√

2p1

)
. (49)

Let θ0 = dφ and θ1, θ2, be the 1-forms, defined in P 1 (resp. D) by

θ1 = M

αr2
p4

ϕ′′

1 + ϕ′2 dp1 − dp3 θ2 = p3

2p1

(
ϕ′′

1 + ϕ′2 − ϕ′
√

2p1

)
dp1 + dp4.

We have the following results, applying the theorems of section 3, which can be proved by
direct computations:

Proposition 6. The bivectors of the form � = −�12U ∧ V , defined in P 1, where

U = ∂

∂p2
V = ∂

∂p1
+

M

αr2
p4

ϕ′′

1 + ϕ′2
∂

∂p3
− p3

2p1

(
ϕ′′

1 + ϕ′2 − ϕ′
√

2p1

)
∂

∂p4
(50)

and �12 ∈ C∞(P 1) is a non-vanishing function, are Poisson tensors of rank 2 in P 1.
The vector field X in P 1, whose integral curves are the solutions of (47), is a

Hamiltonian vector field with respect to the Poisson bivector � with the specific function

�12 = 2p1/α(1 + ϕ′2) and Hamiltonian function E given by (48), i.e., X = �
�
(dE) in P 1.

Proposition 7. The bivectors � = f [(Zφ)U ∧ V + Y ∧ Z], defined in D ⊂ R
5, where U and

V are given by (50), Z = ∂/∂p5, Y = (Uφ)V − (V φ)U , and f ∈ C∞(D) is a non-vanishing
function, are Poisson tensors of rank 2 in D, except in the set of singular equilibria, where
they vanish.

The vector field X in D, whose integral curves are the solutions of (44), is a Hamiltonian
vector field with respect to the Poisson bivector � with the specific function f = 1/2α(1 + ϕ′2)
and Hamiltonian function E given by (45), i.e., X = ��(dE) in D.

Remark. For the present case, a Poisson structure analogous to one of the structures �

of proposition 6 has been found, to the best of our knowledge, by the first time in [8], see
their equation (3.11) for λ = 0. In fact, up to a rescaling, they are the same, by using the
identifications

x2 = M

r
p4

√
2p1

√
1 + ϕ′2

ϕ′ x3 = −M

r

√
2p1p4 + p3ϕ

′
√

2p1

√
1 + ϕ′2 x4 = αr

p2

√
1 + ϕ′2

√
2p1

x1 = 1√
1 + ϕ′2 f (x1) = −

√
2p1

√
1 + ϕ′2

ϕ′ .

The (local) Poisson bivector found in [8] for this case reads in their coordinates (x1, x2, x3, x4)

as {
αr2

(
∂

∂x1
+

f ′(x1)

x1
x3

∂

∂x2

)
+ mr2 x2

f (x1)

∂

∂x3

}
∧ ∂

∂x4
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which, in particular, is also of the type described in example 1. Therefore, multiples of this
bivector are again Poisson bivectors and hence, the rescaling introduced in [8], by means of
an invariant measure, in order to render the reduced system Hamiltonian, is unnecessary.

On the other hand, Hermans in [25] has not noticed the existence of any of these Poisson
structures of rank 2 but he constructed a closed 2-form, with domain contained in P 1, which
vanish in a set containing the set of regular equilibria, but has rank 4 otherwise. For this
construction, which uses non-holonomic reduction [5], it is indeed necessary to rescale the
original reduced vector field, see section 4.1 of [25].

4.4. Ball rolling on the interior of a cylinder

In this section, we will treat the special case of a ball rolling inside of a cylinder, which cannot
be parametrized as in section 4.3. In contrast with the general case, this case is completely
and explicitly solvable, as it is well known, see, e.g., [4, 8, 32, 33]. However, we will give an
independent treatment.

For this specific system, we will easily find a family of Poisson structures of rank 2,
generated by two of them, with respect to which the reduced system is Hamiltonian with the
reduced energy as Hamiltonian function.

Consider therefore the case of the ball rolling inside a surface of revolution, with the
following variations: the centre of mass of the ball will be parametrized by the vector a, with
cylindrical coordinates (ρ cos θ, ρ sin θ, z), where ρ is the radius of the cylinder on which the
centre of mass of the ball moves, and z is the height with respect to the gravitational energy
reference point. The normal vector γ reads then γ = −(cos θ, sin θ, 0). The system (39)
becomes in the coordinates (ω1, ω2, ω3) and (θ, z)

ω̇1 = m

α

(
g

r
+

r

ρ
ω3(ω1 cos θ + ω2 sin θ)

)
sin θ

ω̇2 = −m

α

(
g

r
+

r

ρ
ω3(ω1 cos θ + ω2 sin θ)

)
cos θ (51)

ω̇3 = 0 θ̇ = − r

ρ
ω3 ż = r(ω2 cos θ − ω1 sin θ)

where α = M + mr2

r2 .
Likewise, the energy (40) reads now

H = 1
2 {(M + mr2)(ω · ω) − mr2(ω1 cos θ + ω2 sin θ)2} + mgz (52)

which is conserved by the system (51). Obviously, ω3 is a first integral of the system as well.
Let us consider now the system obtained after the reduction of the S1 symmetry of

rotations of the whole system about the vertical axis, as in the general case. Although now
the S1 action is free, we will use again invariant theory in order to perform the reduction.
Consider the invariants similar (but not equal) to (19):

σ1 = z σ2 = γ1ω2 − γ2ω1 = −ω2 cos θ + ω1 sin θ

σ3 = γ1ω1 + γ2ω2 = −ω1 cos θ − ω2 sin θ σ4 = ω3
(53)

which in this case can be regarded as coordinates on R
4. Then, the reduced system for

(σ1, σ2, σ3, σ4) reads

σ̇1 = −rσ2 σ̇2 = Mσ4

αrρ
σ3 +

mg

αr
σ̇3 = − r

ρ
σ4σ2 σ̇4 = 0 (54)

which preserves the reduced energy

E = 1
2

{
mr2

(
σ 2

2 + σ 2
4

)
+ M

(
σ 2

2 + σ 2
3 + σ 2

4

)}
+ mgσ1. (55)
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The reduced vector field X in the reduced space reads then

X = −rσ2
∂

∂σ1
+

(
Mσ4

αrρ
σ3 +

mg

αr

)
∂

∂σ2
− r

ρ
σ4σ2

∂

∂σ3
(56)

and we have X(E) = 0 in all points of R
4. The general solution of (54) can be given explicitly.

It reads

σ1(t) = σ1(0) − r

ν1ν2

{
σ ′

2(0)
(
1 − cos

√
ν1ν2t

)
+

√
ν1ν2σ2(0) sin

√
ν1ν2t

}
σ2(t) = σ2(0) cos

√
ν1ν2t +

σ ′
2(0)√
ν1ν2

sin
√

ν1ν2t

σ3(t) = −σg

ν2
+

σ ′
2(0)

ν2
cos

√
ν1ν2t −

√
ν1

ν2
σ2(0) sin

√
ν1ν2t

σ4(t) = σ4

(57)

where we have defined the constants ν1 = rσ4/ρ, ν2 = Mν1/αr2 and σg = mg/αr . It is
clear that the reduced system, if σ4 	= 0, has integral curves consisting of either periodic orbits
or equilibrium points, belonging to the set {(σ10, 0,−mgρ/Mσ40, σ40) ∈ R

4 | σ10, σ40 ∈ R,

σ40 	= 0}. These equilibrium points correspond to rotations of the ball inside the cylinder
at a constant height, as in the general case. On this occasion, the reduced system can be
reconstructed easily to the complete system, thus the general solution of (51) is

ω1(t) = σ2(t) sin θ(t) − σ3(t) cos θ(t)

ω2(t) = −σ2(t) cos θ(t) − σ3(t) sin θ(t) (58)

ω3(t) = σ4 = ω3(0) z(t) = σ1(t)

where θ(t) = θ0 − ν1t and σi(t), i = 1, 2, 3, are given by (57). If we denote ω1(0) = ω10,
ω2(0) = ω20, we have the relations for the initial conditions

σ2(0) = ω10 sin θ0 − ω20 cos θ0 σ ′
2(0) = σg − ν2(ω10 cos θ0 + ω20 sin θ0).

The complete system, when ω3 	= 0, is then isochronus with two frequencies, the motions
being periodic (relative equilibria, projecting to equilibrium points in the reduced space) or
quasi-periodic, otherwise. The solutions with ω3 = 0 correspond to falling motions of the ball,
rolling along a vertical generatrix of the cylinder. The explicit expression of these solutions is

ω1(t) = ω10 + tσg sin θ0 ω2(t) = ω20 − tσg cos θ0 ω3(t) = 0

θ(t) = θ0 z(t) = z0 − 1
2 rσgt

2 + rt (ω20 cos θ0 − ω10 sin θ0).

We will treat now the question of writing the vector field X, given by (56), as a Hamiltonian
vector field with respect to a Poisson structure of rank 2, with Hamiltonian function E.

We first observe that the reduced vector field X is annihilated by the 1-forms

θ1 = dσ4 θ2 = −σ4

ρ
dσ1 + dσ3 θ3 = αr2σ2σ4 dσ2 + (Mσ3σ4 + mgρ) dσ3

and then, it is easy to apply theorem 1, to obtain the following results:

Proposition 8. The bivector �1 = ∂
∂σ2

∧ 1
σ2

X = − ∂
∂σ2

∧ (
r ∂

∂σ1
+ rσ4

ρ
∂

∂σ3

)
is a Poisson bivector

on R
4 of rank 2 such that �

�

1(θ1) = �
�

1(θ2) = 0. Likewise, the bivector �2 = − 1
mg

∂
∂σ1

∧
X = − 1

mg
∂

∂σ1
∧ [(

Mσ4
αrρ

σ3 + mg

αr

)
∂

∂σ2
− r

ρ
σ4σ2

∂
∂σ3

]
is a Poisson bivector on R

4 of rank 2 such

that �
�

2(θ1) = �
�

2(θ3) = 0. In addition, we have X = �
�

1(dE) = �
�

2(dE), where X is given
by (56) and E by (55).
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Now, the Pfaff systems ‘θ1 = 0, θ2 = 0’ and ‘θ1 = 0, θ3 = 0’ can easily be integrated,
giving non-trivial Casimir functions of �1,�2, and first integrals of X:

Proposition 9. We have ker �
�

1 = span{dc1, dc2}, and ker �
�

2 = span{dc1, dc3}, where
c1 = σ4, c2 = σ3 − σ4

ρ
σ1 and c3 = rσ4

ρ
σ 2

2 +
(

Mσ4
αrρ

σ3 + mg

αr

)
σ3.

As a consequence, we have that the reduced vector field X has in principle four first
integrals, namely, E, c1, c2 and c3, but clearly, they form a functionally dependent set.
However, for example, we have that {E, c2, c3} is generically an independent set of first
integrals, although in the equilibrium points one becomes dependent of the other two. In the
falling motions, σ4 = 0, therefore �1 and �2 become proportional.

Incidentally, we also observe that �
�

1(dc3) = 1
αr2 X and �

�

2(dc2) = − σ4
ρmg

X. In addition,
the Poisson bivectors �1,�2 are compatible in the sense that their Schouten–Nijenhuis bracket
vanishes, [�1,�2] = 0, which can be checked, e.g., using the properties (1). Thus we have
the following result:

Proposition 10. The pencil of bivectors �λ = (1 − λ)�1 + λ�2 consists of Poisson bivectors
of rank 2 such that X = �

�
λ(dE) for all λ ∈ R. Moreover, the functions c1, c2λ =

(1−λ)E−αr2c3 and c3λ = λrσ4E/ρ +mgrc2 are (functionally dependent) Casimir functions
of �λ (and therefore, first integrals of X) for all λ ∈ R.

Proof. That the rank of �λ, for all λ ∈ R, is 2, is obvious when one realizes that it does not
contain terms on ∂

∂σ4
and therefore the rank must be an even number between 0 and 4. The

other statements are a matter of computation using the above observations. �

5. Conclusions and outlook

We have shown the form of certain Poisson structures of rank 2 with respect to which certain
reduced problems of non-holonomic mechanics become Hamiltonian. We have shown that
in R

4 and R
5, from an algebraic point of view, these Poisson structures are defined, up to

a factor function, by the choice of the kernel of bivectors on these spaces to be generated
by 1-forms of a specific type. Such 1-forms define integrable codistributions in the sense
of Frobenius, and are chosen in order to accommodate and generalize the systems of first
order non-autonomous differential equations which appear after reduction in certain non-
holonomic mechanical systems, whose solutions are related to first integrals of such reduced
systems.

We have applied the theory to the cases of the rolling disc, the Routh’s sphere, and
the ball rolling on a surface of revolution, explicitly recovering as a particular case some
results of [8]. Thus, we have shown that the framework suggested by Borisov, Mamaev and
Kilin [7, 8] can be improved along the lines discussed, namely, that those reduced systems
need no rescaling to become Hamiltonian with respect to a Poisson structure of rank 2, and
that the domain of definition of the Poisson structures introduced therein can be extended,
including even the set of singular equilibria of the reduced systems. A natural question is
whether a similar approach could be used in other non-holonomic systems, maybe of higher
dimension.

However, there are more fundamental points still to be better understood. For example, to
what extent the mentioned Poisson structures can be useful to investigate the intimate nature
of these and maybe other non-holonomic systems, for example in order to characterize their
integrability properties [3, 21, 22]; see also the recent work [23]. Another question could be
to clarify the origin of the system of differential equations giving the conservation laws for
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the mentioned reduced non-holonomic systems, see also [4, 10, 19, 32, 40] and references
therein.
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